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Introduction

Clinical Decision Support Systems (CDSS) are powerful tools which can leverage state-of-the-art machine learning
(ML) models to enhance health and health care. Convincing clinicians to adopt these tools can be difficult, even when
they have relatively high accuracy?. User-centered concerns including lack of trust? and difficult-to-understand designs
can lead clinicians to ignore recommendations made by CDSS. Explainable Artificial Intelligence (XAI) has been
proposed as a potential pathway to address the trust concerns of clinicians®. Some XAl approaches have been shown
to increase clinician trust in CDSS*. However, current explanation displays have also been shown to not be a reliable
method for clinicians to distinguish between correct and incorrect ML model predictions®. This may be due to common
visualizations for XAl being too complex. In this study we aim to assess clinicians’ explanatory needs by developing
preliminary CDSS displays which use XAl to aid them in assessing whether a prediction is correct. To achieve our
aim, we are designing these displays (see Figure) in collaboration with potential users through semi-structured
interviews and think-aloud sessions.

Methods

Participants are clinicians or clinicians in training familiar with CDSS. Initial participants were identified through
professional contacts of the investigators, followed by snowball sampling based on referrals from participants.
Participants are being engaged in a single study session consisting of a semi-structured interview, a think-aloud
exploration of a proposed interface design, and an unstructured interview that will last from 15-30 minutes each. Audio
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Conclusion

Our study of clinicians’ explanatory needs may help design CDSS interfaces which reduce potential instances of
automation bias caused by XAl while increasing clinicians’ understanding of how these explanations relate to their
patient’s state. Insights from our clinician needs interviews could form the basis for other developers to create
Explainable CDSS tools.
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« Clinicians often ignore Clinical Decision Support Systems (CDSS)
recommendations:
« Lack of Trust in System’s Accuracy
« Difficult-to-understand Designs
« Potential Solutions:
« Explainable Artificial Intelligence (XAl)
« Participatory Design

« To explore clinician’s perspectives on:
« Preliminary XAl displays for CDSS.
« Explainable CDSS in general.

« Semi-Structured Interviews & Focus Group.

« Review preliminary XAl displays for an EMR-based CDSS.

« Focus on participants’ critiques and preferences.

« Emergent coding to extract insights from interview transcripts.
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Figure 1. Display for a CDSS that highlights patient information predicted to be of
interest for a clinician. Highlighted information is shown in blue.
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Figure 2. Design #1 Feature Importance Plot. Display of impact of features on
highlight model’s probability. Positive numbers (green) increase the probability of a
piece of information to be highlighted. Negative numbers (yellow), decrease the
probability of information being highlighted. The horizontal line at 0.5 of the X-axis
(blue) shows the threshold for highlighting. The black line tracks the highlight
model’s probability after accounting for each feature.

y li
A causes B

Likely
A causes B

A —»B

Diagnosis

A o—p B orasaid ’.m‘m

auses

A 4—p B AandBhave

common cause

Undefined causal|
relationshij

A OO

Temp. HR

Systemic BP =P

Acetamino.

Figure 3. Design #2 Causal Graph: Causal
depiction linking Diagnosis to highlighted
information.

Distribution of the Highlighted Values on Similar Patients
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Figure 4. Design #3 Supporting Information.
Comparison of highlighted information that of
similar patients.
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"It would also be useful to know if there are common driving factors across all the highlighted
data elements, because eventually that spot helps us to validate ourselves that all the
highlighted all the predicted data elements are valid."

"If you're going to give me something that's based on a mathematical model...
know like some value telling you how much to trust it."

“Whether the highlight is normal or abnormal, | would like to know why. The evidence; lab
results, medical history. Doctors think like that, like sepsis but why?”"

you want to

... So that goes back again to the temporal aspect to them. Like how is this different from what
happened before? Versus how is this different from other patients?

[“... Twant to know how all of that highlighted datal
fits in terms of the underlying condition that the
patient has and not just accept it without
understanding how it all fits into the context of
the patient.”

Contextual prediction over
prediction assestment

“...a second thing that would be nice to know for
each of the relevant highlights, at least two or
three reasons which is either driving up the
prediction or driving down the prediction."

Conclusions

« Clinicians preferred:

« Evidence of importance rather than estimated feature importance values.
« Contextualizing predictions (Highlights) more important than

« Assessing prediction correctness

« Feature importance
« Assessment of prediction correctness should be integrated such that it occurs as part of clinician workflow.
* Modification to Designs #2 and #3 should include workflow improvements like:

« Providing shortcuts to relevant lab results and medical history.

« Non-Highlighted information that is clinically relevant to the highlighted information.
« Limitations:

« Sample Size (Only 5 clinicians / clinicians in training).
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